

Networks

- Network Analysis
 - Applications
 - Network Properties
- Network Models
 - Random-Graph Models
 - Growing Random Models
 - Strategic Network Formation
- Network Structure & Dynamics
 - Network Centrality
 - Community Detection
 - Diffusion through Networks
 - Search on Networks
- Bibliography

berzal@acm.org

Network Analysis

Networks permeate our lives.

Networks play a central role in determining

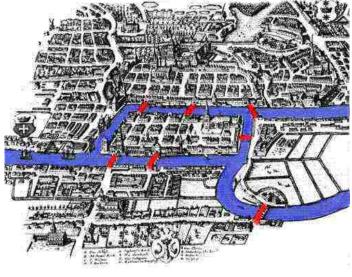
- the transmission of information about job opportunities,
- how diseases spread,

- which products we buy,
- our likelihood of succeeding professionally,

Network Analysis

As a field of study...

 How relationships between parts give rise to the collective behaviors of a system and how the system interacts and forms relationships with its environment (complex systems).


 Common principles, algorithms and tools that govern network behavior (network science).

Network Analysis

Origins: Graph Theory

The Seven Bridges of Könisberg (Leonhard Euler, 1736)

Networks as graphs "on steroids"...

- **Objects**: Graph vertices.
 - Objects can be of different kinds.
 - Objects can be labeled.
 - Objects can have attributes
- Links between objects: Graph edges.
 - Links can be of different kinds.
 - Links can be directed (arcs) or undirected (edges).
 - Links can have attributes.

Network Analysis

A formal definition of network

[Ted G. Lewis: "Network Science," 2009]

G(t) = { N(t), L(t), f(t) : J(t) }

where

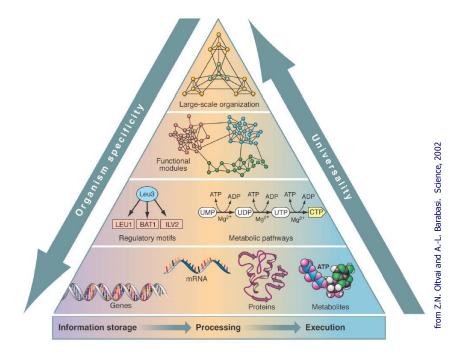
- t = time (simulated or real)
 - N = nodes (a.k.a. vertices or "actors")
 - L = links (a.k.a. edges)
 - f = topology (connections through links)
 - J = behavior of nodes and links (algorithm)

Network Analysis

An interdisciplinary field: Complex systems

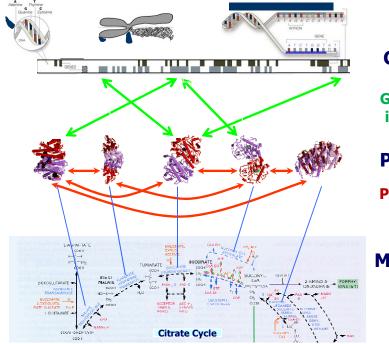
("networks of heterogeneous components that interact")

- Physics: Nonlinear dynamics & chaos.
 Dynamical systems that are highly sensitive to initial conditions (a.k.a. butterfly effect).
- Economics: Markets.
 Spontaneous (or emergent) order as the result of human action, but not the execution of any human design [Austrian perspective].
- Information theory: Complex adaptive systems. (focus on the ability to change and learn from experience).



- "Cheminformatics": Chemical compounds.
- "Bioinformatics": Protein networks & bio-pathways
- Software Engineering: Program analysis...
- Network flow analysis (transport, workflows...)
- Semi-structured databases, e.g. XML
- Knowledge management: Ontologies & semantic nets
- Computer-aided design (CAD): IC design...
- Geographic information systems (GIS) & cartography
- Social networks, e.g. Web
- Economic networks, e.g. markets

Applications


"Life complexity pyramid"

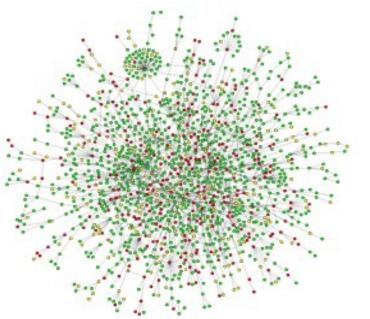
Biological networks

GENOME

Gene-protein interactions

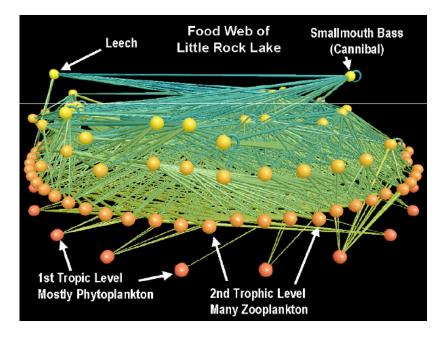
PROTEOME

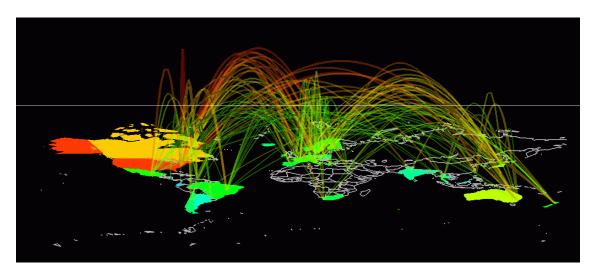
Protein-protein interactions

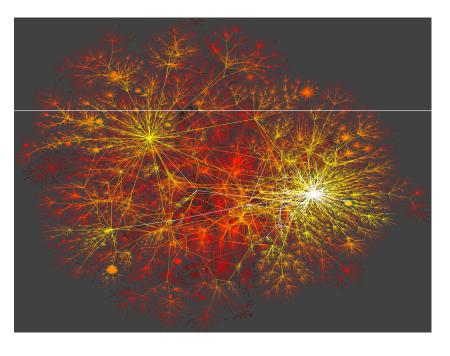

METABOLISM

Biochemical reactions

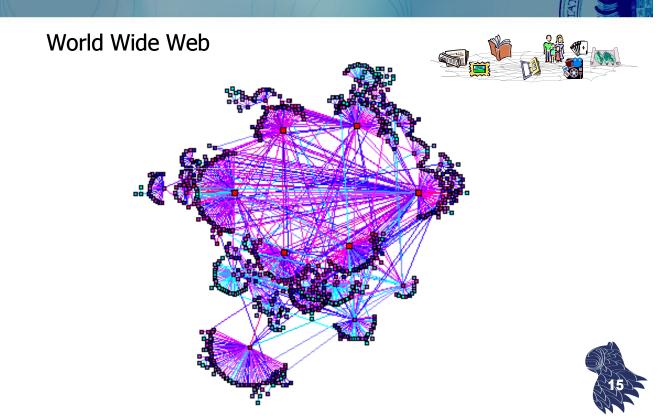
Applications


Yeast protein interaction network

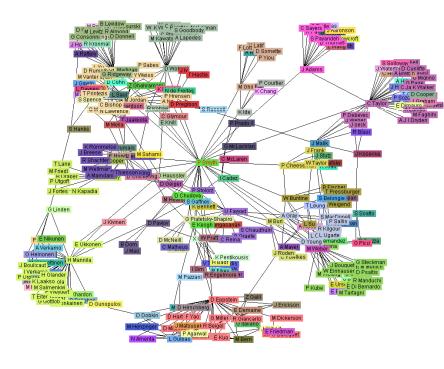

Ecological network: Trophic relationships in a food web.

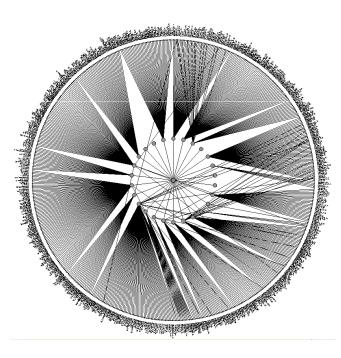

Applications

Telecommunication network

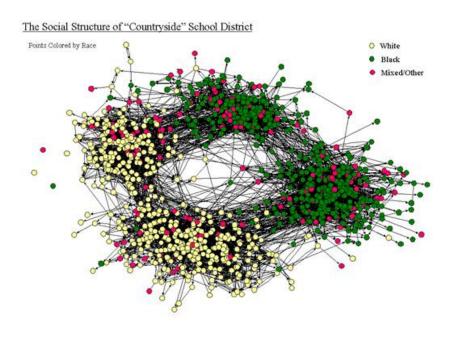


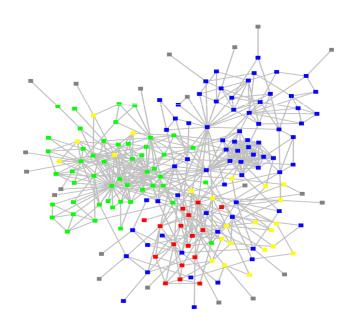
Internet


Applications

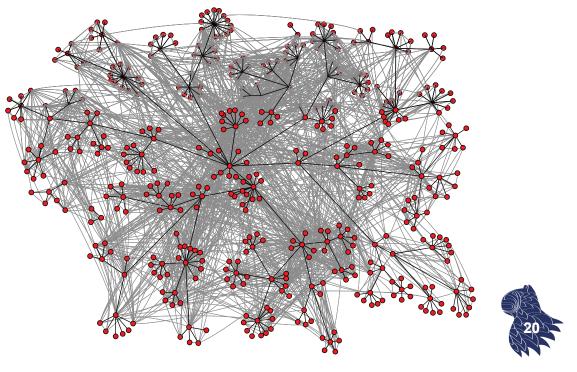


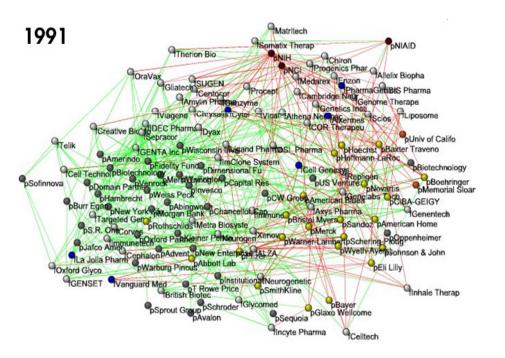
Social network: Bibliographic network (coauthors)


Social network: Bibliographic network (coauthors)


Social network: FOAF ("friend of a friend")

Applications


Social network: Organization



Social network: E-mail spectroscopy

Applications

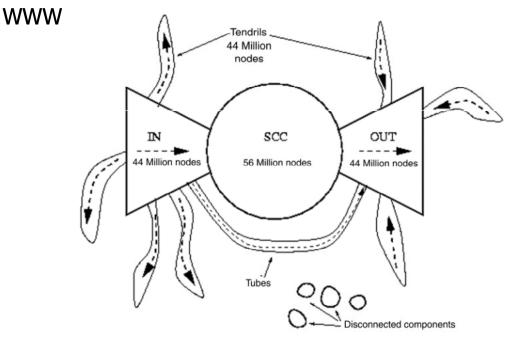
Social network: US Biotech Industry

Common network features:

- Large scale.
- Continuous evolution.
- Distribution (nodes decide their connections).
- Interactions only through existing links.

Network Properties

Some interesting structural properties:

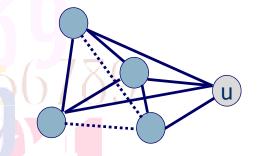

- Connected components: How many? Of what size?.
- Network diameter: Average distance, worst case...
- Node degree distribution
 & existence of "hubs" (heavily-connected nodes).
- Groupings (balance between local and large-distance connections, as well as their roles).

Network Connectivity

Network Properties

Network Diameter "small worlds" Well, IF A LIKES B, BUT B LIKES C WHO LIKES P ANP E WHO BOTH LIKE A WHO DOESN'T EVEN KNOW THAT P EXISTS, SHOULP F TRY TO HAVE G TALK TO B SOI E WILL KNOW THAT C LIKES P ANP E, ANP THAT C WILL POWNP H IF SHE COMES AROUNP AGAIN BUTTING IN? WILL KNOW THAT C LIKES D ANP E, ANP THAT C WILL POWNP H IF SHE COMES AROUNP AGAIN BUTTING IN?

Clustering coefficient


nbr(u)	Neighbors of the node u in the network.
k	Number of neighbors of u, i.e. nbr(u) .
max(u)	Maximum number of links among the neighbors of u, e.g. k*(k-1)/2.

Clustering coefficient for the node u: c(u) = (#links among neighbors of u) / max(u)

Clustering coefficient for the graph G: C = average of c(u) for every node in G

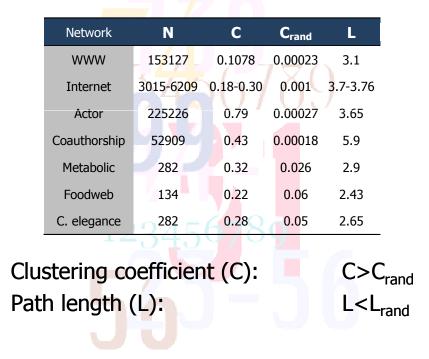
Clustering coefficient

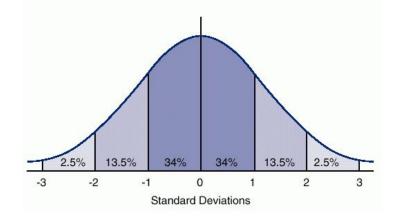
0 <= c(u) <= 1

Similarity of u neighbors to a clique (complete graph).

Informal interpretation:

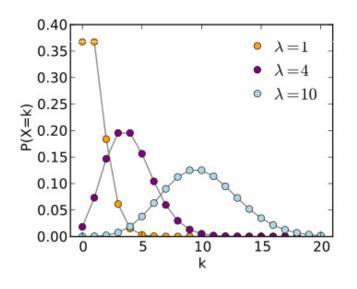
"My friends tend to be friends among them."




Clustering coefficient for some real networks

Node degree distribution

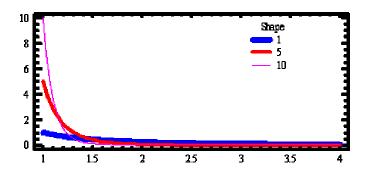
Normal distribution Parameters: Average & deviation



CONTRACTOR ASSET

Node degree distribution

Poisson distribution Single parameter: λ (mean & deviation)



Network Properties

Node degree distribution

Pareto distribution (a.k.a. "power law") Single parameter: α

Ρ(x) ~ x^{-α}

The Pareto principle (the "80-20 rule"): 20% of the population controls 80% of the wealth.

C 34.3%

Node degree distribution

Hubs

Small number of nodes with a very high degree.

 Hubs appear with power laws (P(x) ~ x^{-α}), but not with normal/binomial/Poisson distributions.

Network Properties

Node degree distribution

Log-log plot

Pareto distribution

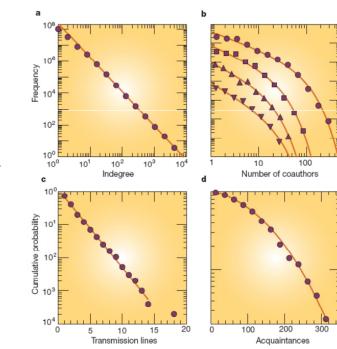
- $\log(\Pr[X = x]) = \log(1/x^{\alpha}) = -\alpha \log(x)$
- Linear, $-\alpha$ slope.

Normal distribution

- $\log(\Pr[X = x]) = \log(a \exp(-x^2/b)) = \log(a) x^2/b$
- Nonlinear, concave around the average.

Poisson distribution

- $\log(\Pr[X = x]) = \log(\exp(-\lambda) \lambda^{x}/x!)$
- Nonlinear.


10

10

Node degree distribution

Log-log plot

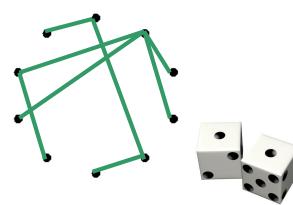
- a WWW power law
- **b** Coauthorship networks power law with exponential cutoff
- c Power grid exponential
- d Social network Gaussian

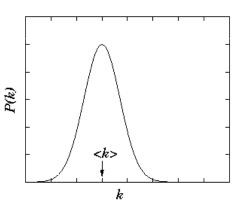
Network Models

"Natural" networks tend to have...

- One (or a few) connected components.
 - Independent of network size.
- A small diameter ("six degrees of separation").
 - Constant, logarithmically increasing, or even decreasing with network size.
- High clustering ("communities").
 - Much larger than expected from a random network (and, even so, with a small diameter!).
- A mixture of connections.
 - Local vs. "long-distance" connections

Do they share some "universal" features?

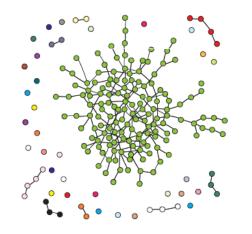

- Random networks.
- Random-biased networks.
- Small-world networks.
- Scale-free networks.
- Hierarchical & modular networks.
- Affiliation networks.

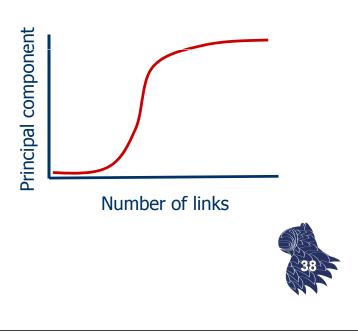

Network Models

Random Networks

Erdös-Rényi model

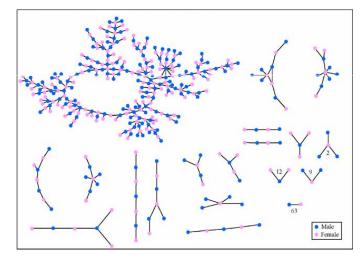
- Small number of connected components (typically one).
- Low clustering coefficient.
- Poisson distribution.





Random Networks

Erdös-Renyi model

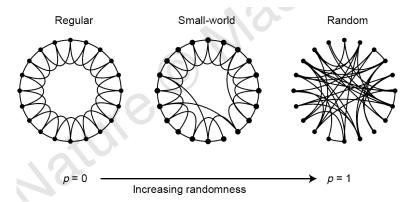


Network Models

Random Networks

Example: Romantic relationships in the Add Health data set.

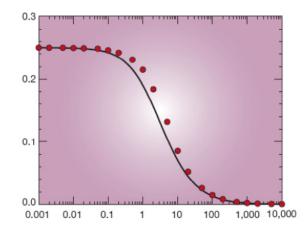
Peter S. Bearman, James Moody & Katherine Stovel: "Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks" American Journal of Sociology, 110(1):44–91, July 2004



Small-World Networks

Watts & Strogatz model

- Small number of connected components (typically one).
- Small diameter.
- Poisson distribution.
- High clustering coefficient.

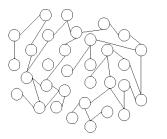


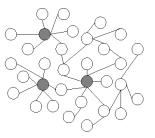
Network Models

Small-World Networks

Watts & Strogatz model

Average path length, normalized by system size, plotted as a function of the average number of shortcuts.





Scale-Free Networks

Barabási & Albert model

- Small number of connected components (typically one).
- Small diameter.
- Pareto distribution.
- Small clustering coefficient.
- Hubs.

(a) Random network

(b) Scale-free network

Network Models

Scale-Free Networks

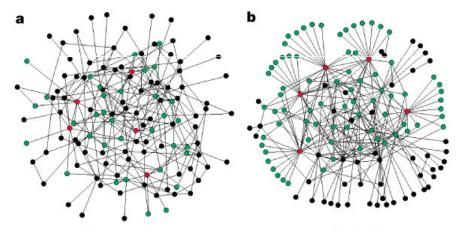
Barabási & Albert model

"Natural" interpretation of the model:

 Variable number of nodes: Network grows as new nodes are added.

Preferential attachment:

The more connected a node is, the more likely it is to receive new links ("rich get richer" or Matthew effect).



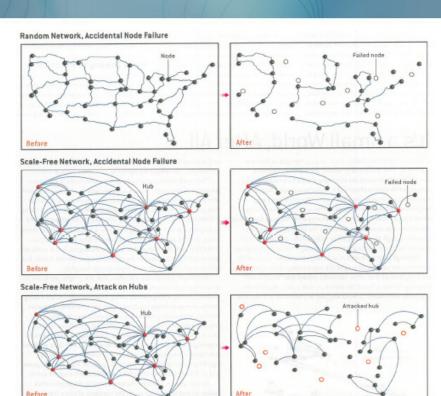
Scale-Free Networks

Barabási & Albert model

Exponential model... ... without hubs.

Scale-free model... ... with hubs.

<section-header>

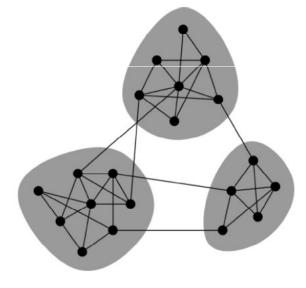

CONTRACTOR MUSIC

Scale-Free Networks

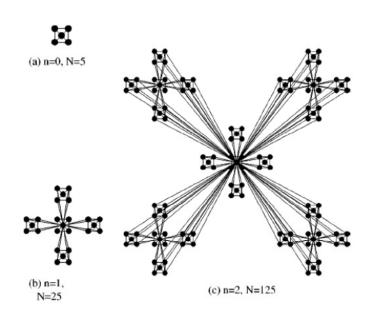
Features

- Self-organization traits: Links are not random (a feature found in many complex systems).
- Tolerance to random attacks, which easily disrupt random networks but not scale-free networks.
- Vulnerability to targeted attacks: "Hubs" are essential to maintain connectedness.

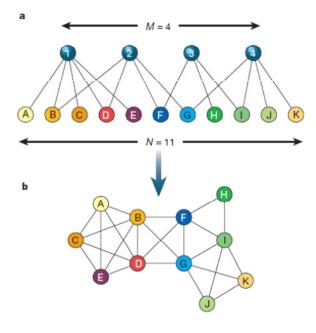
Network Models



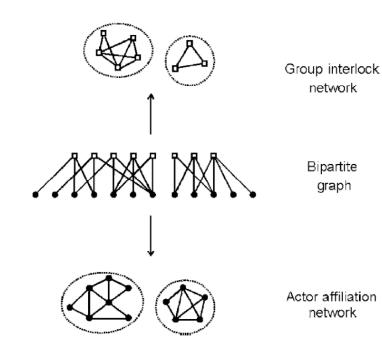
Hierarchical/Modular Networks


- Hierarchical organization.
- Hubs.
- Cliques.

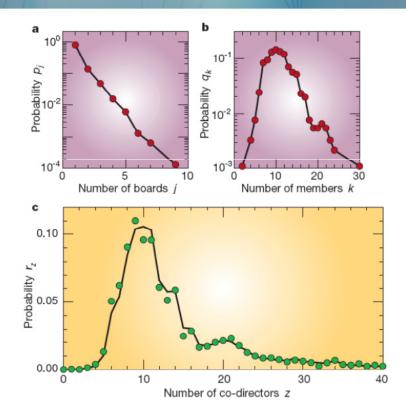
Network Models


Hierarchical/Modular Networks

Affiliation Networks


Bipartite graph to model social interactions:

Network Models


Affiliation Networks

Network Structure & Dynamics

The countless ways in which network structures affect our lives make it critical to understand:

1. How network structure affect behavior.

2. Which network structure is likely to emerge.

Network Structure & Dynamics

A complex system is a system composed of interconnected parts that, as a whole, exhibit one or more properties (behavior) not obvious from the properties of the individual parts (i.e. emergence).

Network Structure & Dynamics

Research problems

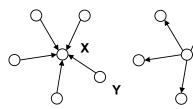
- Search on networks (with partial local information)
- Diffusion problems: epidemics, social contagion (ideas, fads, products...)
- Analysis of network properties e.g. robustness/vulnerability

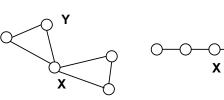
Network Structure & Dynamics

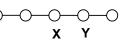
From an algorithmic point of view...

- Objects:
 - Ranking (HITS, PageRank...).
 - Classification & anomaly detection.
 - Clustering & community detection.
 - Object identification (e.g. "entity resolution").
- Links:
 - Link prediction.

Graphs:


...


- Subgraph detection.
- Graph classification.
- Graph generation models.


Network Structure: Centrality

Different notions of centrality

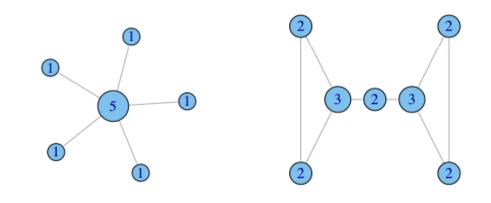
In each of the following networks, X has higher centrality than Y according to a particular measure

in-degree

out-degree

betwenness

closeness

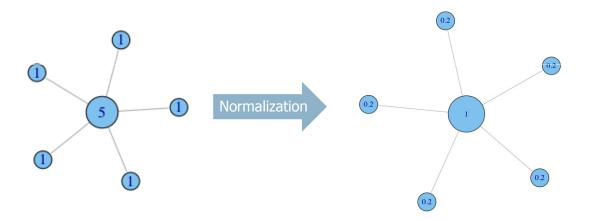


[Lada Adamic, "Social Network Analysis", https://www.coursera.org/course/sna]

2

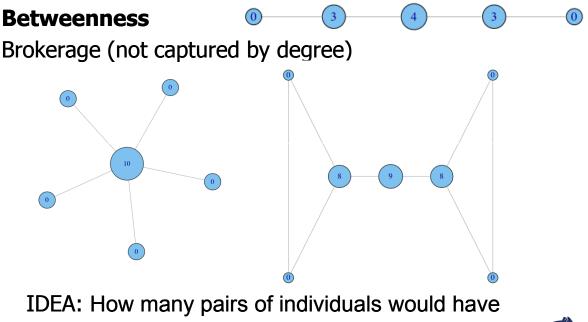
Degree

Nodes with more connections are more central...



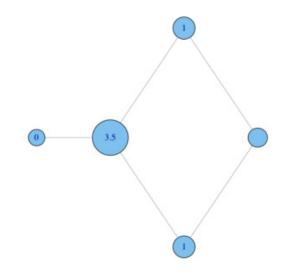
[Lada Adamic, "Social Network Analysis", https://www.coursera.org/course/sna]

Network Structure: Centrality


Degree

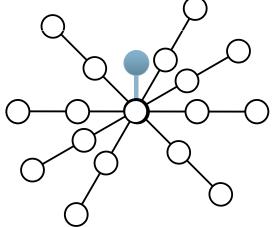
Nodes with more connections are more central...

[Lada Adamic, "Social Network Analysis", https://www.coursera.org/course/sna]

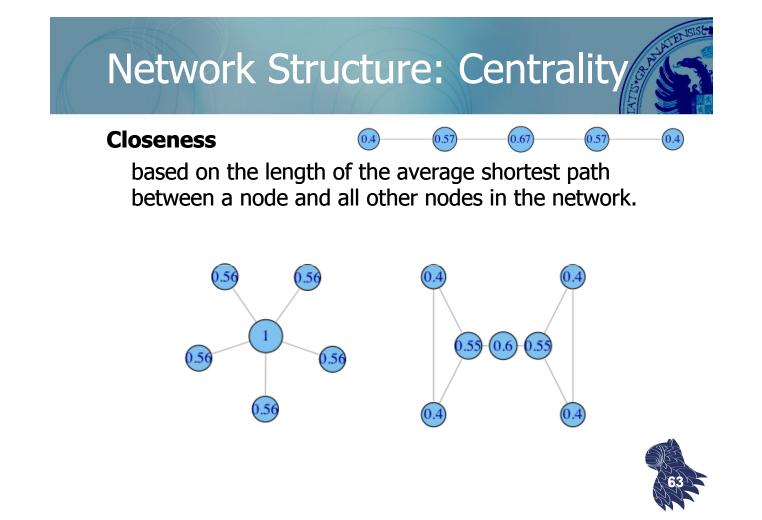


IDEA: How many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

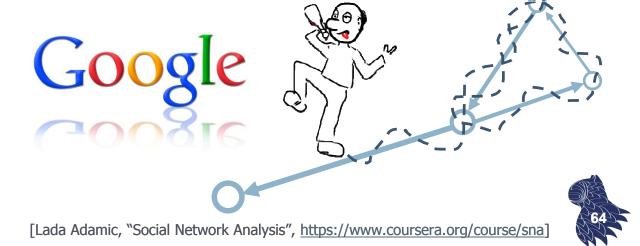
Betweenness


Brokerage (not captured by degree)

Partial credit for lying in one of several shortest paths...


Closeness

When it is not so important to have many connections, nor be between others, but be in the middle of things... not too far from the center.

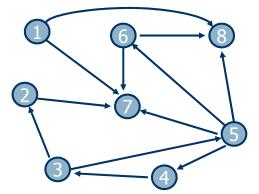


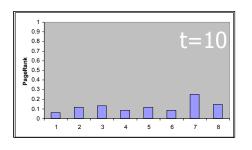
[Lada Adamic, "Social Network Analysis", https://www.coursera.org/course/sna]

PageRank

A random walker following links in a network for a very long time will spend a fraction of time at each node that can be used as a measure of its importance.

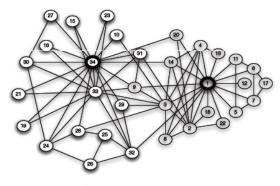
Network Structure: Centrality

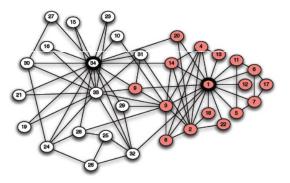

PageRank


Problem: Stuck in the network

Solution: Teleportation

A random jump to anywhere else with a given probability.





Community detection (i.e. clustering)

Identification of groups of nodes within a network...

(a) Karate club network

(b) After a split into two clubs

David Easley & Jon Kleinberg: "Networks, Crowds & Markets: Reasoning About a Highly Connected World", <u>http://www.cs.cornell.edu/home/kleinber/networks-book/</u>

Network Structure: Communities

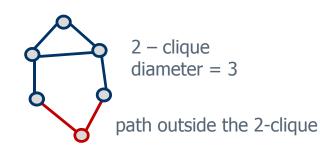

Heuristics

- Mutual ties
- Frequency of ties within a community (cliques & k-cores)
- Closeness/reachability of community members (n-cliques)
- Relative frequency of ties within a community (ties among members compared to ties to non-members)

Cliques & k-cores

- Cliques (complete subgraphs)
 - A single missing links disqualifies the clique
 - Overlapping cliques

K-cores
 (every node connected to at least k other nodes)


Network Structure: Communities

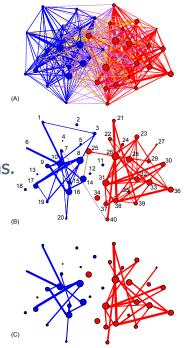
n-cliques

Maximal distance between any two nodes is n IDEA: Information flow throw intermediaries.

Problems:

- Diameter > n
- Disconnected n-cliques

Solution: **n-clubs** (maximal subgraphs of diameter n)

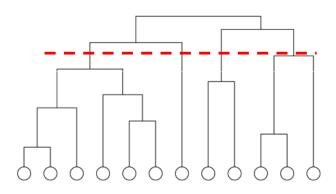


Example: Political blogs

- A) All citations between blogs.
- B) Blogs with at least 5 citations in both directions.
- C) Edges further limited to those exceeding 25 combined citations.

only 15% of the citations bridge communities

[Adamic & Glance, LinkKDD2005]


1 Digbys Blog 2 Jame Walcott 3 Pandagon 4 bbg.johnkerry.com 5 Oliver Willis 6 America Blog 7 Crooked Timber 8 Daliy Kös 9 American Pospect 10 Eschaton

1 JavaReport 2 VokaPundit 3 Poger L Smon 4 Tim Bar 5 Andrew Sullvan 6 Instapundit 7 Blogsfor Bush 8 LittleGreen Footballs 9 Belmont Club 0 Captain's Cuarters 1 Powerline 2 HughHewitt 3 INDCburnal 4 Real Clear Politics 5 Winds of Change 6 Alahpundit 7 Wichelle Malkin 8 WzBarg 9 Dean's World 0 Volokh

Network Structure: Communities

Community detection algorithms

Hierarchical clustering

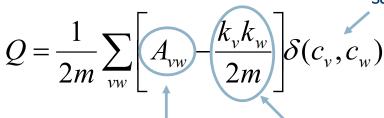
Michelle Girvan & Mark E.J. Newman: "Community structure in social and biological networks" PNAS **99**(12):7821–7826, 2002 doi:10.1073/pnas.122653799

Betweenness clustering

Hierarchical clustering using edge betweenness

compute the betweenness of all edges while (betweenness of any edge > threshold) remove edge with highest betweenness recalculate betweenness

 Betweenness clustering is inefficient due to the need to recompute edge betweenness in every iteration.


Network Structure: Communities

Modularity clustering

 Consider links that fall within a community (vs. links between a community and the rest of the network)

Modularity Q

if vertices are in the same community

adjacency matrix

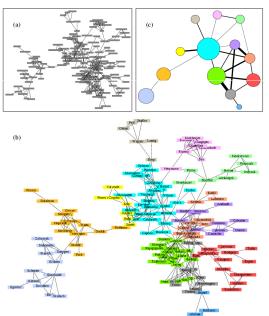
probability of an edge between two vertices is proportional to their degrees

NOTE: For a random network, Q=0

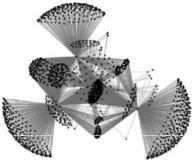
Modularity clustering Algorithm

start with all vertices as isolates

do


join clusters with the greatest increase in modularity (ΔQ) while (ΔQ > 0)

Aaron Clauset, Mark E. J. Newman, Cristopher Moore: "Finding community structure in very large networks" Physical Review E 70(6):066111, 2004 <u>doi:10.1103/physreve.70.066111</u>



Modularity clustering

An application: Visualization of large networks (Gephi)

Limitations of current community detection methods

- Scalability: Identification of large communities.
- Existence of overlapping communities in large networks.
- Unrealistic models (algorithms make oversimplified assumptions over the networks or community structures, but perform poorly against real world data sets).
- Heuristics without performance guarantees (for those heuristic algorithms that work well in practice, there is no performance guarantee over the quality of their output).

Bibliography

Networks: Origins & Applications (social networks, Web...)

- Stanley Milgram: The small world problem. Psychology Today, 2:60-67 (1967)
- Phillip W. Anderson: More is different. Science, 177:393-396 (1972)
- Mark S. Granovetter: The strength of weak ties. American Journal of Sociology, 78:1360-1380 (1973)
- Stanley Wasserman & Katherine Faust: Social Network Analysis: Methods and Applications. Cambridge University Press, 1994
- John P. Scott: **Social Network Analysis**, 2nd edition. Sage Publications Ltd., 2000.
- Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins & Janet Wiener: Graph structure in the Web. Computer Networks 33:309–320 (2000)
- Steven H. Strogatz: Exploring Complex Networks. Nature, 410:268-275 (2001)
- Albert-Laszlo Barabasi: Linked: How Everything Is Connected to Everything Else and What It Means. Plume, 2003. ISBN 0452284392
- Duncan J. Watts: Six Degrees: The Science of a Connected Age. W. W. Norton & Company, 2004. ISBN 0393325423
- Jure Leskovec, Jon M. Kleinberg & Christos Faloutsos: Graphs over time: densification laws, shrinking diameters and possible explanations. KDD'2005

Bibliography

Network Models

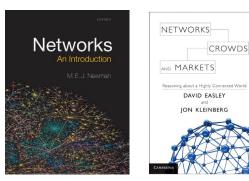
- Paul Erdös & Alfred Rényi: On the evolution of random graphs.
 Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61 (1960) reprinted in Duncan, Barabasi & Watts (eds.): "The Structure and Dynamics of Networks"
- Ray Solomonoff & Anatol Rapoport: Connectivity of random nets.
 Bulletin of Mathematical Biophysics, 13:107-117 (1951)
 reprinted in Duncan, Barabasi & Watts (eds.): "The Structure and Dynamics of Networks"
- Duncan J. Watts & Steven H. Strogatz: Collective dynamics of 'small-world' networks. Nature, 393:440-442 (1998)
- Albert-László Barabási & Réka Albert: Emergence of scaling in random networks. Science, 286:509-512 (1999)
- Réka Albert, Hawoong Jeong & Albert-László Barabási: Error and attack tolerance of complex networks. Nature 406:378-382 (2000)
- M.E.J. Newman, S.H. Strogatz & D.J. Watts: Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64:026118 (2001)
- M.E.J. Newman, S.H. Strogatz & D.J. Watts: Random graphs models of social networks. PNAS 99:2566-2572 (2002)
- Erzsébet Ravasz & Albert-László Barabási: Hierarchical organization in complex networks. Physical Review E, 67:026112 (2003)
- Mark Newman: The structure and function of complex networks. SIAM Review 45:167-256 (2003)

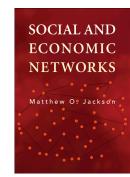
Bibliography

Community Detection

- Michelle Girvan & Mark E.J. Newman: Community structure in social and biological networks, PNAS 99(12):7821–7826 (2002)
- Aaron Clauset, Mark E. J. Newman & Cristopher Moore: Finding community structure in very large networks, Physical Review E 70(6):066111 (2004)
- Gergely Palla, Imre Derényi, Illés Farkas & Tamás Vicsek: Uncovering the overlapping community structure of complex networks in nature and society, Nature 435:814-818 (2005)
- Jure Leskovec, Kevin J. Lang, Anirban Dasgupta & Michael W. Mahoney: Statistical Properties of Community Structure in Large Social and Information Networks, International World Wide Web Conference, WWW'08 (2008). Extended version: Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters, arxiv:0810.1355 (2008)
- Martin Rosvall & Carl T. Bergstrom: Maps of random walks on complex networks reveal community structure, PNAS 105(4):1118-1123 (2008)
- Jure Leskovec, Kevin J. Lang & Michael W. Mahoney: Empirical Comparison of Algorithms for Network Community Detection, WWW 2010 (2010)
- Santo Fortunato: Community detection in graphs. Physics Reports, 486(3-5):75-174, (2010).
- S. Arora, R. Ge, S. Sachdeva & G. Schoenebeck: Finding overlapping communities in social networks: toward a rigorous approach. Proceedings of the 13th ACM Conference on Electronic Commerce, EC '12, pp. 37-54 (2012)

Bibliography

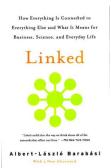

Search on Networks


- Sergey Brin & Lawrence Page: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, April 1998
- David Gibson, Jon M. Kleinberg & Prabhakar Raghavan: Inferring Web Communities from Link Topology. ACM Conference on Hypertext and Hypermedia, June 1998
- Jon M. Kleinberg: Authoritative sources in a hyperlinked environment. Journal of the ACM, September 1999
- Toby Walsh: Search in a Small World. IJCAI'1999
- Jon M. Kleinberg. Navigation in a Small World. Nature, August 2000.
- Jon M. Kleinberg: The small-world phenomenon: An algorithm perspective. STOC'2000
- Scott White & Padhraic Smyth: Algorithms for Estimating Relative Importance in Networks. KDD'2003
- Hanghang Tong & Christos Faloutsos: Center-Piece Subgraphs: Problem Definition and Fast Solutions. KDD'2006
- Alekh Agarwal, Soumen Chakrabarti & Sunny Aggarwal: Learning to Rank Networked Entities. KDD'2006
- Jeffrey Davitz, Jiye Yu, Sugato Basu, David Gutelius & Alexandra Harris: iLink: Search and Routing in Social Networks. KDD'2007.

Bibliography

- David Easley & Jon Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010. ISBN 0521195330 http://www.cs.cornell.edu/home/kleinber/networks-book/
- Mark Newman: Networks: An Introduction.
 Oxford University Press, 2010. ISBN 0-19-920665-1
- Matthew O. Jackson: Social and Economic Networks, Princeton University Press, 2008. ISBN 0-691-13440-5

Bibliography



- Jiawei Han & Micheline Kamber:
 Data Mining: Concepts and Techniques [2nd edition], section 9.2. Addison-Wesley, 2006. ISBN 1-55860-901-3
- Mark Newman, Albert-Laszlo Barabasi & Duncan J. Watts (editors): The Structure and Dynamics of Networks. Princeton University Press, 2006. ISBN 0-691-11357-2
- Ted G. Lewis: Network Science: Theory and Applications. Wiley, 2009. ISBN 0-470-33188-7

Bibliography

- Albert-Laszlo Barabási: Linked: How Everything Is Connected to Everything Else and What It Means. Plume, 2003. ISBN 0452284392
- Duncan J. Watts: Six Degrees: The Science of a Connected Age. W. W. Norton & Company, 2004. ISBN 0393325423
- Albert-Laszlo Barabási: Bursts: The Hidden Pattern Behind Everything We Do. Dutton, 2010. ISBN 0525951601

Albert-László Barabási Author of LINKED

